Write the Implementation (.cpp File) of the Counter Class of the Previous Exercise.
Implement Stack using Queues
The problem is opposite of this post. We are given a Queue data structure that supports standard operations like enqueue() and dequeue(). We need to implement a Stack data structure using only instances of Queue and queue operations allowed on the instances.
Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includestopic-wise practice questions on all important DSA topics along with10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today!
A stack can be implemented using two queues. Let stack to be implemented be 's' and queues used to implement be 'q1' and 'q2'. Stack 's' can be implemented in two ways:
Method 1 (By making push operation costly)
This method makes sure that newly entered element is always at the front of 'q1', so that pop operation just dequeues from 'q1'. 'q2' is used to put every new element at front of 'q1'.
- push(s, x) operation's step are described below:
- Enqueue x to q2
- One by one dequeue everything from q1 and enqueue to q2.
- Swap the names of q1 and q2
- pop(s) operation's function are described below:
- Dequeue an item from q1 and return it.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using
namespace
std;
class
Stack {
queue<
int
> q1, q2;
int
curr_size;
public
:
Stack()
{
curr_size = 0;
}
void
push(
int
x)
{
curr_size++;
q2.push(x);
while
(!q1.empty()) {
q2.push(q1.front());
q1.pop();
}
queue<
int
> q = q1;
q1 = q2;
q2 = q;
}
void
pop()
{
if
(q1.empty())
return
;
q1.pop();
curr_size--;
}
int
top()
{
if
(q1.empty())
return
-1;
return
q1.front();
}
int
size()
{
return
curr_size;
}
};
int
main()
{
Stack s;
s.push(1);
s.push(2);
s.push(3);
cout <<
"current size: "
<< s.size()
<< endl;
cout << s.top() << endl;
s.pop();
cout << s.top() << endl;
s.pop();
cout << s.top() << endl;
cout <<
"current size: "
<< s.size()
<< endl;
return
0;
}
Java
import
java.util.*;
class
GfG {
static
class
Stack {
static
Queue<Integer> q1 =
new
LinkedList<Integer>();
static
Queue<Integer> q2 =
new
LinkedList<Integer>();
static
int
curr_size;
Stack()
{
curr_size =
0
;
}
static
void
push(
int
x)
{
curr_size++;
q2.add(x);
while
(!q1.isEmpty()) {
q2.add(q1.peek());
q1.remove();
}
Queue<Integer> q = q1;
q1 = q2;
q2 = q;
}
static
void
pop()
{
if
(q1.isEmpty())
return
;
q1.remove();
curr_size--;
}
static
int
top()
{
if
(q1.isEmpty())
return
-
1
;
return
q1.peek();
}
static
int
size()
{
return
curr_size;
}
}
public
static
void
main(String[] args)
{
Stack s =
new
Stack();
s.push(
1
);
s.push(
2
);
s.push(
3
);
System.out.println(
"current size: "
+ s.size());
System.out.println(s.top());
s.pop();
System.out.println(s.top());
s.pop();
System.out.println(s.top());
System.out.println(
"current size: "
+ s.size());
}
}
Python3
from
queue
import
Queue
class
Stack:
def
__init__(
self
):
self
.q1
=
Queue()
self
.q2
=
Queue()
self
.curr_size
=
0
def
push(
self
, x):
self
.curr_size
+
=
1
self
.q2.put(x)
while
(
not
self
.q1.empty()):
self
.q2.put(
self
.q1.queue[
0
])
self
.q1.get()
self
.q
=
self
.q1
self
.q1
=
self
.q2
self
.q2
=
self
.q
def
pop(
self
):
if
(
self
.q1.empty()):
return
self
.q1.get()
self
.curr_size
-
=
1
def
top(
self
):
if
(
self
.q1.empty()):
return
-
1
return
self
.q1.queue[
0
]
def
size(
self
):
return
self
.curr_size
if
__name__
=
=
'__main__'
:
s
=
Stack()
s.push(
1
)
s.push(
2
)
s.push(
3
)
print
(
"current size: "
, s.size())
print
(s.top())
s.pop()
print
(s.top())
s.pop()
print
(s.top())
print
(
"current size: "
, s.size())
C#
using
System;
using
System.Collections;
class
GfG {
public
class
Stack {
public
Queue q1 =
new
Queue();
public
Queue q2 =
new
Queue();
public
int
curr_size;
public
Stack()
{
curr_size = 0;
}
public
void
push(
int
x)
{
curr_size++;
q2.Enqueue(x);
while
(q1.Count > 0) {
q2.Enqueue(q1.Peek());
q1.Dequeue();
}
Queue q = q1;
q1 = q2;
q2 = q;
}
public
void
pop()
{
if
(q1.Count == 0)
return
;
q1.Dequeue();
curr_size--;
}
public
int
top()
{
if
(q1.Count == 0)
return
-1;
return
(
int
)q1.Peek();
}
public
int
size()
{
return
curr_size;
}
};
public
static
void
Main(String[] args)
{
Stack s =
new
Stack();
s.push(1);
s.push(2);
s.push(3);
Console.WriteLine(
"current size: "
+ s.size());
Console.WriteLine(s.top());
s.pop();
Console.WriteLine(s.top());
s.pop();
Console.WriteLine(s.top());
Console.WriteLine(
"current size: "
+ s.size());
}
}
Output :
current size: 3 3 2 1 current size: 1
Method 2 (By making pop operation costly)
In push operation, the new element is always enqueued to q1. In pop() operation, if q2 is empty then all the elements except the last, are moved to q2. Finally the last element is dequeued from q1 and returned.
- push(s, x) operation:
- Enqueue x to q1 (assuming size of q1 is unlimited).
- pop(s) operation:
- One by one dequeue everything except the last element from q1 and enqueue to q2.
- Dequeue the last item of q1, the dequeued item is result, store it.
- Swap the names of q1 and q2
- Return the item stored in step 2.
C++
#include <bits/stdc++.h>
using
namespace
std;
class
Stack {
queue<
int
> q1, q2;
int
curr_size;
public
:
Stack()
{
curr_size = 0;
}
void
pop()
{
if
(q1.empty())
return
;
while
(q1.size() != 1) {
q2.push(q1.front());
q1.pop();
}
q1.pop();
curr_size--;
queue<
int
> q = q1;
q1 = q2;
q2 = q;
}
void
push(
int
x)
{
q1.push(x);
curr_size++;
}
int
top()
{
if
(q1.empty())
return
-1;
while
(q1.size() != 1) {
q2.push(q1.front());
q1.pop();
}
int
temp = q1.front();
q1.pop();
q2.push(temp);
queue<
int
> q = q1;
q1 = q2;
q2 = q;
return
temp;
}
int
size()
{
return
curr_size;
}
};
int
main()
{
Stack s;
s.push(1);
s.push(2);
s.push(3);
s.push(4);
cout <<
"current size: "
<< s.size()
<< endl;
cout << s.top() << endl;
s.pop();
cout << s.top() << endl;
s.pop();
cout << s.top() << endl;
cout <<
"current size: "
<< s.size()
<< endl;
return
0;
}
Java
import
java.util.*;
class
Stack {
Queue<Integer> q1 =
new
LinkedList<>(), q2 =
new
LinkedList<>();
int
curr_size;
public
Stack()
{
curr_size =
0
;
}
void
remove()
{
if
(q1.isEmpty())
return
;
while
(q1.size() !=
1
) {
q2.add(q1.peek());
q1.remove();
}
q1.remove();
curr_size--;
Queue<Integer> q = q1;
q1 = q2;
q2 = q;
}
void
add(
int
x)
{
q1.add(x);
curr_size++;
}
int
top()
{
if
(q1.isEmpty())
return
-
1
;
while
(q1.size() !=
1
) {
q2.add(q1.peek());
q1.remove();
}
int
temp = q1.peek();
q1.remove();
q2.add(temp);
Queue<Integer> q = q1;
q1 = q2;
q2 = q;
return
temp;
}
int
size()
{
return
curr_size;
}
public
static
void
main(String[] args)
{
Stack s =
new
Stack();
s.add(
1
);
s.add(
2
);
s.add(
3
);
s.add(
4
);
System.out.println(
"current size: "
+ s.size());
System.out.println(s.top());
s.remove();
System.out.println(s.top());
s.remove();
System.out.println(s.top());
System.out.println(
"current size: "
+ s.size());
}
}
Python3
from
queue
import
Queue
class
Stack:
def
__init__(
self
):
self
.q1
=
Queue()
self
.q2
=
Queue()
self
.curr_size
=
0
def
push(
self
, x):
self
.q1.put(x)
self
.curr_size
+
=
1
def
pop(
self
):
if
(
self
.q1.empty()):
return
while
(
self
.q1.qsize() !
=
1
):
self
.q2.put(
self
.q1.get())
popped
=
self
.q1.get()
self
.curr_size
-
=
1
self
.q
=
self
.q1
self
.q1
=
self
.q2
self
.q2
=
self
.q
def
top(
self
):
if
(
self
.q1.empty()):
return
while
(
self
.q1.qsize() !
=
1
):
self
.q2.put(
self
.q1.get())
top
=
self
.q1.queue[
0
]
self
.q2.put(
self
.q1.get())
self
.q
=
self
.q1
self
.q1
=
self
.q2
self
.q2
=
self
.q
return
top
def
size(
self
):
return
self
.curr_size
if
__name__
=
=
'__main__'
:
s
=
Stack()
s.push(
1
)
s.push(
2
)
s.push(
3
)
s.push(
4
)
print
(
"current size: "
, s.size())
print
(s.top())
s.pop()
print
(s.top())
s.pop()
print
(s.top())
print
(
"current size: "
, s.size())
C#
using
System;
using
System.Collections;
class
GfG
{
public
class
Stack
{
public
Queue q1 =
new
Queue();
public
Queue q2 =
new
Queue();
public
void
Push(
int
x) => q1.Enqueue(x);
public
int
Pop()
{
if
(q1.Count == 0)
return
-1;
while
(q1.Count > 1)
{
q2.Enqueue(q1.Dequeue());
}
int
res = (
int
)q1.Dequeue();
Queue temp = q1;
q1 = q2;
q2 = temp;
return
res;
}
public
int
Size() => q1.Count;
public
int
Top()
{
if
(q1.Count == 0)
return
-1;
while
(q1.Count > 1)
{
q2.Enqueue(q1.Dequeue());
}
int
res = (
int
)q1.Dequeue();
q2.Enqueue(res);
Queue temp = q1;
q1 = q2;
q2 = temp;
return
res;
}
};
public
static
void
Main(String[] args)
{
Stack s =
new
Stack();
s.Push(1);
Console.WriteLine(
"Size of Stack: "
+ s.Size() +
"\tTop : "
+ s.Top());
s.Push(7);
Console.WriteLine(
"Size of Stack: "
+ s.Size() +
"\tTop : "
+ s.Top());
s.Push(9);
Console.WriteLine(
"Size of Stack: "
+ s.Size() +
"\tTop : "
+ s.Top());
s.Pop();
Console.WriteLine(
"Size of Stack: "
+ s.Size() +
"\tTop : "
+ s.Top());
s.Pop();
Console.WriteLine(
"Size of Stack: "
+ s.Size() +
"\tTop : "
+ s.Top());
s.Push(5);
Console.WriteLine(
"Size of Stack: "
+ s.Size() +
"\tTop : "
+ s.Top());
}
}
Output :
current size: 4 4 3 2 current size: 2
References:
Implement Stack using Two Queues
This article is compiled by Sumit Jain and reviewed by GeeksforGeeks team. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Write the Implementation (.cpp File) of the Counter Class of the Previous Exercise.
Source: https://www.geeksforgeeks.org/implement-stack-using-queue/
0 Response to "Write the Implementation (.cpp File) of the Counter Class of the Previous Exercise."
ارسال یک نظر